Standard Aircraft Characteristics

NAVY MODEL
AF-9J
AIRCRAFT
(TITLE UNCLASSIFIED)

THIS PUBLICATION SUPERSEDES NAVAIR 00–110A–1 DATED
1 MAY 1955 IN PART AND ALL ADDENDA THERETO

This publication shall not be carried in aircraft on combat missions or when there is a reasonable chance of its falling into the hands of an unfriendly nation, unless specifically authorized by the "Operational Commander."

PUBLISHED BY DIRECTION OF THE
COMMANDER OF THE NAVAL AIR SYSTEMS COMMAND

NOTICE—This document contains information affecting the national defense of the United States within the meaning of the Espionage Laws, Title 18, U. S. C., Sections 793 and 794. The transmission or the revelation of its contents in any manner to an unauthorized person is prohibited by law.

1 JULY 1967
UNCLASSIFIED
NAVAIR 00-110AF9-5

Reproduction for non-military use of the information or illustrations contained in this publication is not permitted without specific approval of the issuing service (NAVAIR or USAF). The policy for use of Classified Publications is established for the Air Force in AFR 203-1 and for the Navy in Navy Regulations, Article 1509.

LIST OF CHANGED PAGES ISSUED

INSERT LATEST CHANGED PAGES. DESTROY SUPERSEDED PAGES.

NOTE: The portion of the text affected by the current change is indicated by a vertical line in the outer margins of the page.

* The asterisk indicates pages changed, added or deleted by the current change.

ADDITIONAL COPIES OF THIS PUBLICATION MAY BE OBTAINED AS FOLLOWS:

ASAF ACTIVITIES.—In accordance with Technical Order No. 00-5-2.

NAVY ACTIVITIES.—Use DD FORM 1348 and submit in accordance with the instructions contained in NAVSUP PUBLICATION 437—Military Standard Requisitioning and Issue Procedures.

For information on other available material and details of distribution refer to NAVSUP PUBLICATION 2002, SECTION VIII and NAVAIR 00-100A.

A

UNCLASSIFIED
STANDARD AIRCRAFT CHARACTERISTICS

AF-9J COUGAR

GRUMMAN
POWER PLANT

NO. & MODEL (1) J85-F-6A
SNR. Pratt & Whitney
TVFR. Centrifugal Compressor
ENGINE LENGTH 110°
ENGINE DIA. 51°

RATINGS

LEG. " SWP " ALT.
T.O. 7,250 11,000 S.S.L.
MIL. 7,250 11,000 S.S.L.
NONL. 5,500 10,400 S.S.L.

Spec. P.M. No. NY6-4D Appendix B

MISSION AND DESCRIPTION

The FW-26 is a single seat, swept wing, carrier based airplane whose primary purpose is carry special weapon stores. This airplane is the development of the FW-24. Improvements are increased wing area, flap area, fuel capacity and a cambered leading edges. A pressurized cabin with temperature control and an ejection seat, is installed. The guns and radar are accessible by sliding the nose forward. A nose boom is installed for in-flight refueling.

The airplane is controlled longitudinally and laterally by hydraulically operated surfaces and directionally by a mechanically operated surface. Lateral control is provided by means of flap and lateral trim by a wing tip trimmer flap. Longitudinal control is provided by an all moveable stabilizer and the conventional manual elevator which is used for flap down and emergency flight conditions. Longitudinal trim is accomplished by moving the entire stabilizer.

DEVELOPMENT

First Production January 1954
Service Use October 1954

WEIGHTS

LOADING LBS. LBS. LBS.
EMPTY 11,060
BARE 12,076
BARE INCL. O.S. 16,780 7.0
CANNON 17,545 7.0
MIL. T.O. (Field) 24,703
(Gal.) 24,763
MAX. L.O.G. (Field) 26,793
(Arrest.) 17,613

All Weights are Actual.

FUEL AND OIL

CALS. NO. TANKS LOCATION
647 2 Fuselage
236 6 Wing
300 2 Wing Droppable

FUEL GRADE J-4
FUEL S/N/D Applicable MIL-P-5624

OIL

CAPACITY [GALS] 3.25
GRADE 1010
SPEOC Applicable MIL-O-4681

ORDNANCE

GUNS
4 - 20mm M-3 Nose, 760 Rds.

FIRE CONTROL

ADS 30-1
ACPS Mk. 6 Mod. 3
Radar Arm/AFC-30A
Cape ARO 195

EXTERNAL STORES PROVISIONS

KIND STA BACK CAPABILITY
7L Aero 150 Fuel Pack
7L Aero 65A
(All) 25A Mk. 12 Bomb

DIMENSIONS

ARM. AREA 137 Sq. Ft.
SPAN 34° - 6°
MAC. 10° - 6°
SAAEAGE 90°
LENGTH 41° - 9°
HEIGHT 12° - 3°
TREAD 8° - 3°
PERFORMANCE SUMMARY

TAKE-OFF LOADING CONDITION

<table>
<thead>
<tr>
<th>Description</th>
<th>Clean Fly, 2 Racks</th>
<th>Clean Fly, 2 Racks + 1 MB-12 Store</th>
<th>Clean Fly, 2 Racks + 1 MB-12 Store + 1 Rack</th>
<th>Clean Fly, 2 Racks + 1 MB-12 Store + 1 Rack + 1 Rodeo Drop Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-off Weight</td>
<td>1 lb.</td>
<td>22,575 lb.</td>
<td>22,575 lb.</td>
<td>22,575 lb.</td>
</tr>
<tr>
<td>Fuel</td>
<td>1 lb.</td>
<td>6,930 lb.</td>
<td>6,930 lb.</td>
<td>6,930 lb.</td>
</tr>
<tr>
<td>Fay load</td>
<td>1 lb.</td>
<td>1,596 lb.</td>
<td>1,596 lb.</td>
<td>1,596 lb.</td>
</tr>
<tr>
<td>Wing loading</td>
<td>1 lb./sq. ft.</td>
<td>66.9 lb./sq. ft.</td>
<td>66.9 lb./sq. ft.</td>
<td>66.9 lb./sq. ft.</td>
</tr>
<tr>
<td>Stall speed - power-off</td>
<td></td>
<td>123.2 ft./sec.</td>
<td>123.2 ft./sec.</td>
<td>123.2 ft./sec.</td>
</tr>
<tr>
<td>Take-off run at S.L. - calms</td>
<td>ft.</td>
<td>5,330</td>
<td>5,330</td>
<td>5,330</td>
</tr>
<tr>
<td>Take-off run at S.L. - 25 knots</td>
<td>ft.</td>
<td>3,690</td>
<td>3,690</td>
<td>3,690</td>
</tr>
<tr>
<td>Take-off to clear 50 ft. - calms</td>
<td>ft.</td>
<td>6,450</td>
<td>6,450</td>
<td>6,450</td>
</tr>
<tr>
<td>Max. speed/altitude</td>
<td>(a)</td>
<td>520/10,000</td>
<td>520/10,000</td>
<td>520/10,000</td>
</tr>
<tr>
<td>Rate of climb at S.L.</td>
<td>(a)</td>
<td>3,640</td>
<td>3,640</td>
<td>3,640</td>
</tr>
<tr>
<td>Time: S.L. to 20,000 ft.</td>
<td>(a)</td>
<td>6.5</td>
<td>6.5</td>
<td>6.5</td>
</tr>
<tr>
<td>Time: S.L. to 30,000 ft.</td>
<td>(a)</td>
<td>12.0</td>
<td>12.0</td>
<td>12.0</td>
</tr>
<tr>
<td>Service ceiling (100 fps)</td>
<td>(a)</td>
<td>36,600</td>
<td>36,600</td>
<td>36,600</td>
</tr>
<tr>
<td>Combat radius</td>
<td>n.m.</td>
<td>450</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>Average cruising speed</td>
<td>km.</td>
<td>443</td>
<td>443</td>
<td>443</td>
</tr>
<tr>
<td>Cruising altitude</td>
<td>ft.</td>
<td>32,900/41,500</td>
<td>32,900/41,500</td>
<td>32,900/41,500</td>
</tr>
<tr>
<td>Combat radius</td>
<td>n.m.</td>
<td>450</td>
<td>450</td>
<td>450</td>
</tr>
<tr>
<td>Average cruising speed</td>
<td>km.</td>
<td>427</td>
<td>427</td>
<td>427</td>
</tr>
<tr>
<td>Mission time</td>
<td>hrs.</td>
<td>1.4</td>
<td>1.4</td>
<td>1.4</td>
</tr>
<tr>
<td>Fuel added in flight at distance out</td>
<td>lbs./min.</td>
<td>3.1</td>
<td>3.1</td>
<td>3.1</td>
</tr>
</tbody>
</table>

COMBAT LOADING CONDITION

<table>
<thead>
<tr>
<th>Description</th>
<th>Clean Fly, 2 Racks</th>
<th>Clean Fly, 2 Racks + 1 MB-12 Store</th>
<th>Clean Fly, 2 Racks + 1 MB-12 Store + 1 Rack</th>
<th>Clean Fly, 2 Racks + 1 MB-12 Store + 1 Rack + 1 Rodeo Drop Tank</th>
</tr>
</thead>
<tbody>
<tr>
<td>Take-off Weight</td>
<td>1 lb.</td>
<td>19,160 lb.</td>
<td>19,160 lb.</td>
<td>19,160 lb.</td>
</tr>
<tr>
<td>Fuel</td>
<td>1 lb.</td>
<td>4,762 lb.</td>
<td>4,762 lb.</td>
<td>4,762 lb.</td>
</tr>
<tr>
<td>Combat speed/altitude</td>
<td>km./sec.</td>
<td>554/s.L.</td>
<td>554/s.L.</td>
<td>554/s.L.</td>
</tr>
<tr>
<td>Rate of climb/altitude</td>
<td>(a)</td>
<td>546/15,000</td>
<td>546/15,000</td>
<td>546/15,000</td>
</tr>
<tr>
<td>Combat ceiling (500 fps)</td>
<td>ft.</td>
<td>41,700</td>
<td>41,700</td>
<td>41,700</td>
</tr>
<tr>
<td>Rate of climb at S.L.</td>
<td>(a)</td>
<td>3,460</td>
<td>3,460</td>
<td>3,460</td>
</tr>
<tr>
<td>Max. speed at S.L.</td>
<td>km.</td>
<td>514</td>
<td>514</td>
<td>514</td>
</tr>
<tr>
<td>Max. speed/altitude</td>
<td>(a)</td>
<td>532/17,000</td>
<td>532/17,000</td>
<td>532/17,000</td>
</tr>
<tr>
<td>Landing Weight</td>
<td>1 lb.</td>
<td>14,790 lb.</td>
<td>14,790 lb.</td>
<td>14,790 lb.</td>
</tr>
<tr>
<td>Fuel</td>
<td>1 lb.</td>
<td>1,362 lb.</td>
<td>1,362 lb.</td>
<td>1,362 lb.</td>
</tr>
<tr>
<td>Stall speed - power-off</td>
<td>km.</td>
<td>95.9</td>
<td>95.9</td>
<td>95.9</td>
</tr>
<tr>
<td>Stall speed - with approach power</td>
<td>km.</td>
<td>100.0</td>
<td>100.0</td>
<td>100.0</td>
</tr>
</tbody>
</table>

NOTES

(A) Military Power.

(B) Radius is reduced approximately 178 km. and fuel allowance is increased 5 minutes for each additional aircraft up to a total of 4 aircraft.

PERFORMANCE BIAS: NAVAIR and contractor's flight tests of the FWE-6 clean airplane. Store data based on contractor's estimates.

RANGE AND BIAS ARE BASED ON ENGINE SPECIFICATION FUEL CONSUMPtIO.

MISSION TIME: Any time where fuel is used and distance gained including combat and refueling allowance time.
NOTES

SPOTTING: A total of 103 airplanes can be accommodated in a landing spot on the flight and hangar decks of a CV-21 class angled deck carrier.

SPECIAL STORE PROBLEM
SEA LEVEL, ALTITUDE STORE DELIVERY

WARM-UP, TAXI, TAKE-OFF: 5 minutes at normal threat at sea level.
CLIMB: On course to optimum cruise altitudes with military threat.
CRUISE-OUT: At maximum range airspeeds at optimum cruise altitudes.
DESCEND TO SEA LEVEL: No fuel used, no distance gained.
RUN-IN TO TARGET: At sea level, 50 N. Mi. at maximum speed with military threat.

DROP STORE
COMBAT FUEL ALLOWANCE: 2 minutes at maximum speed with military threat at sea level.
ESCAPE: At sea level, 50 N. Mi. toward base at maximum speed with military threat.
CLIMB: On course to optimum cruise altitudes with military threat.
CRUISE BACK: At maximum range airspeeds at optimum cruise altitudes.
RESERVE: 20 minutes at speeds for maximum endurance at sea level plus 5% of initial fuel load.

COMBAT RADIUS = CLIMB + CRUISE-OUT + RUN-IN = ESCAPE + CLIMB + CRUISE-BACK

SPECIAL STORE PROBLEM
15,000 FEET ALTITUDE STORE DELIVERY

WARM-UP, TAXI, TAKE-OFF: 5 minutes at normal threat at sea level.
CLIMB: On course to optimum cruise altitudes with military threat.
CRUISE-OUT: At maximum range airspeeds at optimum cruise altitudes.
DESCEND TO 15,000 FEET: Release store.
No fuel used, no distance gained.

COMBAT FUEL ALLOWANCE: 3 minutes at maximum speed with military threat at 15,000 feet.
CRUISE BACK: At maximum range airspeeds at optimum cruise altitudes.
RESERVE: 20 minutes at speeds for maximum endurance at sea level plus 5% of initial fuel load.

COMBAT RADIUS = CLIMB + CRUISE-OUT = CLIMB + CRUISE-BACK

SPECIAL STORE PROBLEM
SEA LEVEL, ALTITUDE STORE DELIVERY
WITH AIRFLIGHT REFUELING

WARM-UP, TAXI, TAKE-OFF: 5 minutes at normal threat at sea level.
CLIMB: On course to optimum cruise altitudes with military threat.
CRUISE-OUT: At maximum range airspeeds at optimum cruise altitudes.
DESCEND TO 35,000 FEET REFueling ALTITUDE: No fuel used, no distance gained.
ALLOWANCE FOR RESERVICE, REROUTING, AND FUEL CONTINGENCIES: 15 minutes at maximum endurance airspeed. (No fuel used or distance gained during fuel transfer).

CLIMB: On course to optimum cruise altitude with military threat.
CRUISE OUT: At maximum range airspeeds at optimum cruise altitudes.
DESCEND TO SEA LEVEL: No fuel used, no distance gained.

The remainder of the problem is the same as the Special Store Problem of loading condition column number 0.

COMBAT RADIUS = CLIMB + PRIMARY CRUISE-OUT + SECONDARY CRUISE-OUT + RUN-IN = ESCAPE + CLIMB + CRUISE-BACK

LOADING CONDITION COLUMN NUMBER 6

CONFIDENTIAL